
Saint Martin’s University

Project Report
MME 566, A2

Alexander Benson
February 24th, 2021

1

1 Project Formulation:

The figure on the right is of the 2-D truss system to be studied. - Elements are numbered using the

circled numbers - Nodes are numbered per the bold/blue numbers

Figure 1: The original truss

1.1 My specific project specifications are as follows:

• Modulus: E = 100 MPa
• Forces: F1 = 60N , F2 = 110N , F3 = 60N
• Element 1:

– L1 = 4m
– A1 = 4 ∗ 10−4m2

• Element 2:

– L2 = 4m
– A2 = 4 ∗ 10−4m2

• Element 3:

– L3 = 5.65m
– A3 = 4 ∗ 10−4m2

• Element 4:

– L4 = 4m
– A4 = 4 ∗ 10−4m2

• Element 5:

– L5 = 5.65m
– A5 = 4 ∗ 10−4m2

• Element 6:

– L6 = 4m
– A6 = 4 ∗ 10−4m2

• Element 7:

– L7 = 5.65m
– A7 = 4 ∗ 10−4m2

• Element 8:

– L8 = 5.65m
– A8 = 4 ∗ 10−4m2

• Element 9:

– L9 = 4m
– A9 = 4 ∗ 10−4m2

• Element 10:

– L10 = 4m
– A10 = 4 ∗ 10−4m2

2

• Element 11:

– L11 = 4m
– A11 = 4 ∗ 10−4m2

1.2 The boundary conditions in effect are:

• u1x and u1y are both 0

• u6y is 0

•

f1x
f1y
f2x
f2y
f3x
f3y
f4x
f4y
f5x
f5y
f6x
f6y

=

R1x

R1y

0
−60N

0
−110N

0
0
0

−60N
0

R6y

2 Global Stiffness Matrix Derivation

2.0.1 The Generalized Stiffness Matrix

Motivation behind finding a generalized transform: Our forces are nodes are all located in

global coordinates, using a reference frame that remains fixed regardless of any motion of the

bodies or the orienation of the element. This system can be expressed as:

F e
G = Ke

GU
e
G

Where e is the element, K is the stiffness matrix, and F and U are are the force and displacement

vectors respectively. They have the subscript ‘G’ to indicate that they are in the global/inertial

reference frame.

The global reference frame has the benefit of being well defined at the surface level, allowing for

an intuitive understanding of the forces on the system and simple expression of node displacement.

It is simpler to calculate displacement on a given node (attached to its parent element) if the forces

are either aligned to the element(more complicated motion is outside the scope of this analysis).

For this reason we would prefer to work in local coordinates. The formula for the local system

looks superficially similar to the global system. The local system is distinct in that the composition

of its stiffness matrix, k, is known and simple:

F e
l = Ke

l U
e
l

3

where K =

1 0 −1 0
0 0 0 0
−1 0 1 0
0 0 0 0

This line of thought motivates us towards finding a transformation matrix T , capable of converting
from global coordinates to local coordinates. This matrix’s inverse would then convert from local

to global coordinates.

With such a transformation matrix, our global displacement/force equation looks like so:

F e
G = TF e

l

F e
G = T−1Ke

l TU
e
g

Assembling a generalized stiffness matrix The desired transformation from global to local co-

ordinates is expressed as follows:
u1
1x

u1
1y

u1
2x

u1
2y

 =

c s 0 0
−s c 0 0
0 0 c s
0 0 −s c

u1x

u1y

u2x

u2y

 ⇒ T e =

c s 0 0
−s c 0 0
0 0 c s
0 0 −s c

,
where c = cos(θ) and s = sin(θ)

This transformation matrix has the added benefit of converting back from local to global when

transposed: its determinant is 1, making its inverse equal to its transpose.

With a transformation matrix defined and knowing that T−1 = T T , a global stiffness matrix can

be assembled via the following formula:

Ke
G = T TKe

l T =

c2 sc −c2 −sc
sc s2 −sc −s2

−c2 −sc c2 sc
−sc −s2 sc s2

While potentially being more computationally expensive than formulating a solution for each in-

dividual element, this generalized approach is both more robust and faster, once computers are

employed.

2.1 The stiffness matrix derivations for individual elements is as follows:

2.1.1 Element 1:

θ1 =
π
2
rad

k1 =
EA1

L1
= 10kN

m

4

f 1
1x

f 1
1y

f 1
2x

f 1
2y

 = k1

0 0 0 0
0 1 0 −1
0 0 0 0
0 −1 0 1

u1
1x

u1
1y

u1
2x

u1
2y

2.1.2 Element 2:

θ2 = 0rad

k2 =
EA2

L2
= 10kN

m
f 2
1x

f 2
1y

f 2
4x

f 2
4y

 = k2

1 0 −1 0
0 0 0 0
−1 0 1 0
0 0 0 0

u2
1x

u2
1y

u2
4x

u2
4y

2.1.3 Element 3:

θ3 = −π
4
rad

k3 =
EA3

L3
= 7.080kN

m
f 3
2x

f 3
2y

f 3
4x

f 3
4y

 = k3

1
2

−1
2

−1
2

1
2

−1
2

1
2

1
2

−1
2

−1
2

1
2

1
2

−1
2

1
2

−1
2

−1
2

1
2

u3
2x

u3
2y

u3
4x

u3
4y

2.1.4 Element 4:

θ4 = 0rad

k4 =
EA4

L4
= 10kN

m
f 4
2x

f 4
2y

f 4
3x

f 4
3y

 = k4

1 0 −1 0
0 0 0 0
−1 0 1 0
0 0 0 0

u4
2x

u4
2y

u4
3x

u4
3y

2.1.5 Element 5:

θ5 =
π
4
rad

k5 =
EA5

L5
= 7.080kN

m
f 5
1x

f 5
1y

f 5
3x

f 5
3y

 = k5

1
2

1
2

−1
2

−1
2

1
2

1
2

−1
2

−1
2

−1
2

−1
2

1
2

1
2

−1
2

−1
2

1
2

1
2

u5
1x

u5
1y

u5
3x

u5
3y

5

2.1.6 Element 6:

θ6 =
π
2
rad

k6 =
EA6

L6
= 10kN

m
f 6
4x

f 6
4y

f 6
3x

f 6
3y

 = k6

0 0 0 0
0 1 0 −1
0 0 0 0
0 −1 0 1

u6
4x

u6
4y

u6
3x

u6
3y

2.1.7 Element 7:

θ7 =
π
4
rad

k7 =
EA7

L7
= 7.080kN

m
f 7
4x

f 7
4y

f 7
5x

f 7
5y

 = k7

1
2

1
2

−1
2

−1
2

1
2

1
2

−1
2

−1
2

−1
2

−1
2

1
2

1
2

−1
2

−1
2

1
2

1
2

u7
4x

u7
4y

u7
5x

u7
5y

2.1.8 Element 8:

θ8 = −π
4
rad

k8 =
EA8

L8
= 7.080kN

m
f 8
3x

f 8
3y

f 8
6x

f 8
6y

 = k8

1
2

−1
2

−1
2

1
2

−1
2

1
2

1
2

−1
2

−1
2

1
2

1
2

−1
2

1
2

−1
2

−1
2

1
2

u8
3x

u8
3y

u8
6x

u8
6y

2.1.9 Element 9:

θ9 = 0rad

k9 =
EA9

L9
= 10kN

m
f 9
3x

f 9
3y

f 9
5x

f 9
5y

 = k9

1 0 −1 0
0 0 0 0
−1 0 1 0
0 0 0 0

u9
3x

u9
3y

u9
5x

u9
5y

2.1.10 Element 10:

θ10 = 0rad

k10 =
EA10

L10
= 10kN

m

6

f 10
4x

f 10
4y

f 10
6x

f 10
6y

 = k10

1 0 −1 0
0 0 0 0
−1 0 1 0
0 0 0 0

u10
4x

u10
4y

u10
6x

u10
6y

2.1.11 Element 11:

θ11 =
π
2
rad

k11 =
EA11

L11
= 10kN

m
f 11
6x

f 11
6y

f 11
5x

f 11
5y

 = k11

0 0 0 0
0 1 0 −1
0 0 0 0
0 −1 0 1

u11
6x

u11
6y

u11
5x

u11
5y

2.2 Assembling the Global Stiffness Matrix

K =

k2+
k5
2

k5
2

0 0 − k5
2

− k5
2

−k2 0 0 0 0 0
k5
2

k1+
k5
2

0 −k1 − k5
2

− k5
2

0 0 0 0 0 0

0 0
k3
2

+k4 − k3
2

−k4 0 − k3
2

k3
2

0 0 0 0

0 −k1 − k3
2

k1+
k3
2

0 0
k3
2

− k3
2

0 0 0 0

− k5
2

− k5
2

−k4 0 C1
k5
2

− k8
2

0 0 −k9 0 − k8
2

k8
2

− k5
2

− k5
2

0 0
k5
2

− k8
2

k5
2

+k6+
k8
2

0 −k6 0 0
k8
2

− k8
2

−k2 0 − k3
2

k3
2

0 0 C2 − k3
2

+
k7
2

− k7
2

− k7
2

−k10 0

0 0
k3
2

− k3
2

0 −k6 − k3
2

+
k7
2

k3
2

+k6+
k7
2

− k7
2

− k7
2

0 0

0 0 0 0 −k9 0 − k7
2

− k7
2

k7
2

+k9
k7
2

0 0

0 0 0 0 0 0 − k7
2

− k7
2

k7
2

k7
2

+k11 0 −k11

0 0 0 0 − k8
2

k8
2

−k10 0 0 0
k8
2

+k10 − k8
2

0 0 0 0
k8
2

− k8
2

0 0 0 −k11 − k8
2

k8
2

+k11

C1 = k4 +

k5
2
+ k8

2
+ k9 and C2 = k2 +

k3
2
+ k7

2
+ k10

f1x
f1y
f2x
f2y
f3x
f3y
f4x
f4y
f5x
f5y
f6x
f6y

= K

u1x

u1y

u2x

u2y

u3x

u3y

u4x

u4y

u5x

u5y

u6x

u6y

7

3 Applying Boundary Conditions

With boundary conditions applied, the problem becomes:

R1x

R1y

0
60N
0

110N
0
0
0

60N
0

R6y

= K

0
0
u2x

u2y

u3x

u3y

u4x

u4y

u5x

u5y

u6x

0

This simplifies the global stiffness matrix, bringing it to:

Kbc =

k3
2

+ k4 − k3
2

−k4 0 − k3
2

k3
2

0 0 0

− k3
2

k1 + k3
2

0 0 k3
2

− k3
2

0 0 0

−k4 0 C1
k5
2

+ k7
2

− k8
2

0 0 −k9 0 − k8
2

0 0 k5
2

− k8
2

k5
2

+ k6 + k8
2

0 −k6 0 0 k8
2

− k3
2

k3
2

0 0 C2 − k3
2

+ k7
2

− k7
2

− k7
2

−k10
k3
2

− k3
2

0 −k6 − k3
2

+ k7
2

k3
2

+ k6 + k7
2

− k7
2

− k7
2

0

0 0 −k9 0 − k7
2

− k7
2

k7
2

+ k9
k7
2

0

0 0 0 0 − k7
2

− k7
2

k7
2

k7
2

+ k11 0

0 0 − k8
2

k8
2

−k10 0 0 0 k8
2

+ k10

Where C1 = k4 +

k5
2
+ k8

2
+ k9 and C2 = k2 +

k3
2
+ k7

2
+ k10

The problem is now formulated as:

0
−60N

0
−110N

0
0
0

−60N
0

= K{bc}

u2x

u2y

u3x

u3y

u4x

u4y

u5x

u5y

u6x

4 Solving

Now that boundary conditions have been applied, the displacements can be quickly found via gaus-

sian elimination or by calculating the inverse of K.

8

4.1 Replacing variables with known values:

Kbc = 1000
N

m

13.540 −3.540 −10 0 −3.540 3.540 0 0 0
−3.540 13.540 0 0 3.540 −3.540 0 0 0
−10 0 27.080 0 0 0 −10 0 −3.540
0 0 0 17.080 0 −10 0 0 3.540

−3.540 3.540 0 0 27.080 0 −3.540 −3.540 −10
3.540 −3.540 0 −10 0 17.080 −3.540 −3.540 0
0 0 −10 0 −3.540 −3.540 13.540 3.540 0
0 0 0 0 −3.540 −3.540 3.540 13.540 0
0 0 −3.540 3.540 −10 0 0 0 13.540

The displacements will be calculated via gaussian elimination (aka row-reduced echelon form):

13, 540 −3, 540 −10, 000 0 −3, 540 3, 540 0 0 0 0
−3, 540 13, 540 0 0 3, 540 −3, 540 0 0 0 −60
−10, 000 0 27, 080 0 0 0 −10, 000 0 −3, 540 0

0 0 0 17, 080 0 −10, 000 0 0 3, 540 −110
−3, 540 3, 540 0 0 27, 080 0 −3, 540 −3, 540 −10, 000 0
3, 540 −3, 540 0 −10, 000 0 17, 080 −3, 540 −3, 540 0 0

0 0 −10, 000 0 −3, 540 −3, 540 13, 540 3, 540 0 0
0 0 0 0 −3, 540 −3, 540 3, 540 13, 540 0 −60
0 0 −3, 540 3, 540 −10, 000 0 0 0 13, 540 0

4.2 Displacements

The displacements calculated are:

u2x

u2y

u3x

u3y

u4x

u4y

u5x

u5y

u6x

=

5.5
−7.4
4.1

−15.6
4.1

−12.8
2.7
−7.4
8.2

mm

4.3 Reactions

We already have a formula for the reactive forces

R1x

R1y

0
−60N

0
−110N

0
0
0

−60N
0

R6y

= K

5.5
−7.4
4.1

−15.6
4.1

−12.8
2.7
−7.4
8.2

⇒

0
115
0

−60
0

−110
0
0
0

−60
0
115

N

9

4.4 Solving for element stress

Since stress is equal to strain times the elastic modulus:

σ = εE

Since strain is the net change in an elements length, the stress can be calculated once the drift due

to other nodes is subtracted, in other words[1]:

σ = E
l

(
u{2x} − u{1x}

)
In local coordinates

This is easily solved using the transformation matrix that has already derived.

σ =
E

l

[
−1 0 1 0

]
u1x

u1y

u2x

u2y

 local

σ =
E

l

[
−1 0 1 0

]
Ts

u1x

u1y

u2x

u2y

 global

The solution for each element is as follows:

4.4.1 Element 1

100∗106Pa
4m

[
−1 0 1 0

]
0 1 0 0
−1 0 0 0
0 0 0 1
0 0 −1 0

0
0

0.0055
−0.0074

 = −185.0kPa

The negative stress indicates compressive stress.

4.4.2 Element 2

100∗106Pa
4m

[
−1 0 1 0

]
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

0
0

0.0041
−0.0128

 = 102.5kPa

The positive stress indicates tensile stress.

4.4.3 Element 3

{100∗106Pa
5.65m

[−1 0 1 0]

 1√
2

− 1√
2

0 0
1√
2

1√
2

0 0

0 0 1√
2

− 1√
2

0 0 1√
2

1√
2

{
0.0055
−0.0074
0.0041
−0.0128

}
= 50.06kPa}

10

4.4.4 Element 4

100∗106Pa
4m

[
−1 0 1 0

]
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

0.0055
−0.0074
0.0041
−0.0156

 = −35.00kPa

4.4.5 Element 5

{100∗106Pa
5.65m

[−1 0 1 0]

 1√
2

1√
2

0 0

− 1√
2

1√
2

0 0

0 0 1√
2

1√
2

0 0 − 1√
2

1√
2

{
0
0

0.0041
−0.0156

}
= −143.9kPa}

4.4.6 Element 6

100∗106Pa
4m

[
−1 0 1 0

]
0 1 0 0
−1 0 0 0
0 0 0 1
0 0 −1 0

0.0041
−0.0128
0.0041
−0.0156

 = −70.00kPa

4.4.7 Element 7

{100∗106Pa
5.65m

[−1 0 1 0]

 1√
2

1√
2

0 0

− 1√
2

1√
2

0 0

0 0 1√
2

1√
2

0 0 − 1√
2

1√
2

{
0.0041
−0.0128
0.0027
−0.0074

}
= 50.06kPa}

4.4.8 Element 8

{100∗106Pa
5.65m

[−1 0 1 0]

 1√
2

− 1√
2

0 0
1√
2

1√
2

0 0

0 0 1√
2

− 1√
2

0 0 1√
2

1√
2

{
0.0041
−0.0156
0.0082

0

}
= −143.9kPa}

4.4.9 Element 9

100∗106Pa
4m

[
−1 0 1 0

]
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

0.0041
−0.0156
0.0027
−0.0074

 = −35.00kPa

4.4.10 Element 10

100∗106Pa
4m

[
−1 0 1 0

]
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

0.0041
−0.0128
0.0082

0

 = 102.5kPa

11

4.4.11 Element 11

100∗106Pa
4m

[
−1 0 1 0

]
0 1 0 0
−1 0 0 0
0 0 0 1
0 0 −1 0

0.0082
0

0.0027
−0.0074

 = −185.0kPa

12

5 Conclusion and Discussion

The appendix can be referenced for the MATLAB script as written.‘

Table 1 lists the hand calculated results of the investigation/project.

Node Dir. Disp.(mm) Force (N) Element Stress (kPa)

1 x 0 0 1 -185.0

y 0 115 (Rcn.) 2 102.5

2 x 5.5 0 3 50.06

y -7.4 -60 4 -35.00

3 x 4.1 0 5 -143.9

y -15.6 -110 6 -70.00

4 x 4.1 0 7 50.06

y -12.8 0 8 -143.9

5 x 2.7 0 9 -35.00

y -7.4 -60 10 102.5

6 x 8.2 0 11 -185.0

y 0 115 (Rcn.)

Table 2 lists the MATLAB calculated results:

Node Dir. Disp.(mm) Force(N) Element Stress(kPa)

1 x 0 0 1 -185.0

y 0 115 (Rcn.) 2 102.0

2 x 5.5 0 3 49.92

y -7.4 -60 4 -35.30

3 x 4.1 0 5 -144.5

y -15.6 -110 6 -70.60

4 x 4.1 0 7 49.92

y -12.8 0 8 -144.5

5 x 2.7 0 9 -35.30

y -7.4 -60 10 102.2

6 x 8.2 0 11 -185.3

y 0 115 (Rcn.)

A careful review of both tables will show that the force and displacement values are identical. The

stresses calculated by hand are slightly different than those calculated by MATLAB. This is not

surprising given that the hand-calculated values were likely to propogate approximation errors at

every calculation step. For this reason the MATLAB calculated results should be assumed to be

the accurate results.

There’s also the fact that the hand calculated results have decimal places that are fixed; without

doing the math on the displacements again it is not possible to calculate more decimals. The MAT-

LAB results can have more decimal places reported as desired.

13

The engineering applications of these results are significant for several reasons:

• Truss systems are a staple of simple bridge design and have applications in high-rise con-

struction

• TheMATLAB code as written is primarily symbolic and can be adapted to any desired inputs

• A simple modification would likely allow for it to be treated as a subroutine or function

• This serves as a reminder of the importance of:

– Establishing the necessary significant figures needed

– Paying attention to the effect of approximation errors ahead of time. Especially where

hand-calculations are concerned but also with computer calculations

• The FEM method is easily programmed symbolically, free programming modules such as

SYMPY may allow for free FEM calculations where paid FEA software is cost-prohibitive

5.1 In summary:

Hand calculations have confirmed the accuracy of a programmatic implementation of FEM. This

introduces the possibility of using simple programming languages (especially symbolic program-

ming) for preliminary structural design.

6 Bibliography:

References

[1] B. Greenlee, “ME 360L - Mechanical Engineering Design III: Finite Element Trusses,”

University of New Mexico, ME 323, Accessed: Mar. 01, 2021. [Online]. Available:

https://www.unm.edu/ bgreen/ME360/Finite

7 Appendix

[1]: clear;

%% Creating Symbolic Variables for Each Truss Variable
angle = sym('t', [1,11]);
U = sym('u',[1, 12]);
F = sym('f',[1, 12]);
k_symbols = sym('k',[1,11]);

14

[2]: %% Defining Scalars
A = 4e-4;
E = 100e6;%mpa

L = [4,4,5.65,4,5.65,4,5.65,5.65,4,4,4];

k_scalar = (A*E)./L;

%% Constructing numeric vectors for each variable

angle_num = [pi/2,0,-pi/4,0,pi/4,pi/2,pi/4,-pi/4,0,0,pi/2];
F_num_bc = [0,-60,0,-110,0,0,0,-60,0];

% Node in list order corresponding to each element
element_to_node=[1:4;...%1

1,2,7,8;...%2
3:4,7:8;...%3
3:6;...%4
1,2,5,6;...%5
7:8,5:6;...%6
7:10;...%7
5:6,11:12;...%8
5:6,9:10;...%9
7:8,11:12;...%10
11:12,9:10];%11

[3]: %% Creating empty element matrices, for convenience
E1 = sym(zeros(12));
E2 = sym(zeros(12));
E3 = sym(zeros(12));
E4 = sym(zeros(12));
E5 = sym(zeros(12));
E6 = sym(zeros(12));
E7 = sym(zeros(12));
E8 = sym(zeros(12));
E9 = sym(zeros(12));
E10 = sym(zeros(12));
E11 = sym(zeros(12));

15

[4]: %% Creating a symbolic transformation Matrix
syms T(theta) Trans(theta)
T(theta)=[cos(theta), sin(theta),0,0;...

-sin(theta),cos(theta),0,0;...
0,0,cos(theta),sin(theta);...
0,0,-sin(theta),cos(theta)];

Trans(theta)=T(theta).'*[1,0,-1,0;0,0,0,0;-1,0,1,0;0,0,0,0]*T(theta);

[5]: %% Defining stiffness matrices for each element
% This could be done with a for loop, however we would lose
% the individual element matrices
E1([1:4],[1:4])=k_symbols(1)*Trans(angle(1));
E2([1:2,7:8],[1:2,7:8])=k_symbols(2)*Trans(angle(2));
E3([3:4,7:8],[3:4,7:8])=k_symbols(3)*Trans(angle(3));
E4([3:6],[3:6])=k_symbols(4)*Trans(angle(4));
E5([1:2,5:6],[1:2,5:6])=k_symbols(5)*Trans(angle(5));
E6([7:8,5:6],[7:8,5:6])=k_symbols(6)*Trans(angle(6));
E7([7:8,9:10],[7:8,9:10])=k_symbols(7)*Trans(angle(7));
E8([5:6,11:12],[5:6,11:12])=k_symbols(8)*Trans(angle(8));
E9([5:6,9:10],[5:6,9:10])=k_symbols(9)*Trans(angle(9));
E10([7:8,11:12],[7:8,11:12])=k_symbols(10)*Trans(angle(10));
E11([11:12,9:10],[11:12,9:10])=k_symbols(11)*Trans(angle(11));

[6]: %% Creating a global matrix
K_sym = E1+E2+E3+E4+E5+E6+E7+E8+E9+E10+E11;

[7]: %% Converting the symbolic solution to numeric
K = subs(K_sym, [angle, k_symbols], [angle_num,k_scalar]);

[8]: %% Boundary Condition Matrix
K_bc=K([3:11],[3:11]);

[9]: K_num_inv = inv(K_bc);

16

[10]: U_num = double(K_num_inv*F_num_bc.');%'

[11]: U = [0,0,U_num.',0].';%'

[12]: K_num_glob = double(K);

[13]: F = K_num_glob*U;

[23]: sigma = [];
difference = [-1,0,1,0];

for i = 1:11
local_disp = [1,0,-1,0];
nodes = element_to_node(i,:);
EL = E/L(i);
displacements = U(nodes);
theta_val = angle_num(i);
transform = T(theta_val);
sigma(i)= EL*difference*transform*displacements;

end
sigma = sigma.';%'

[27]: U
F
sigma

U =

0
0

0.0055
-0.0074
0.0041

-0.0156

17

0.0041
-0.0128
0.0027

-0.0074
0.0082

0

F =

0.0000
115.0000
0.0000

-60.0000
0.0000

-110.0000
0

-0.0000
0

-60.0000
-0.0000

115.0000

sigma =

1.0e+05 *

-1.8530
1.0220
0.4992

-0.3530
-1.4453
-0.7060
0.4992

-1.4453
-0.3530
1.0220

-1.8530

18

	Project Formulation:
	My specific project specifications are as follows:
	The boundary conditions in effect are:

	Global Stiffness Matrix Derivation
	The Generalized Stiffness Matrix
	The stiffness matrix derivations for individual elements is as follows:
	Element 1:
	Element 2:
	Element 3:
	Element 4:
	Element 5:
	Element 6:
	Element 7:
	Element 8:
	Element 9:
	Element 10:
	Element 11:

	Assembling the Global Stiffness Matrix

	Applying Boundary Conditions
	Solving
	Replacing variables with known values:
	Displacements
	Reactions
	Solving for element stress
	Element 1
	Element 2
	Element 3
	Element 4
	Element 5
	Element 6
	Element 7
	Element 8
	Element 9
	Element 10
	Element 11

	Conclusion and Discussion
	In summary:

	Bibliography:
	Appendix

